A simple efficient density estimator that enables fast systematic search
نویسندگان
چکیده
This paper introduces a simple and efficient density estimator that enables fast systematic search. To show its advantage over commonly used kernel density estimator, we apply it to outlying aspects mining. Outlying aspects mining discovers feature subsets (or subspaces) that describe how a query stand out from a given dataset. The task demands a systematic search of subspaces. We identify that existing outlying aspects miners are restricted to datasets with small data size and dimensions because they employ kernel density estimator, which is computationally expensive, for subspace assessments. We show that a recent outlying aspects miner can run orders of magnitude faster by simply replacing its density estimator with the proposed density estimator, enabling it to deal with large datasets with thousands of dimensions that would otherwise be impossible.
منابع مشابه
On the Simple Inverse Sampling with Replacement
In this paper we derive some unbiased estimators of the population mean under simple inverse sampling with replacement, using the class of Hansen-Hurwitz and Horvitz-Thompson type estimators and the post-stratification approach. We also compare the efficiency of resulting estimators together with Murthy's estimator. We show that in despite of general belief, the strategy consisting of inverse s...
متن کاملRow and Column Elimination Sampling Design +1 and its Efficiencies
Extended Abstract. It is a traditional way in biological, sociological, agricultural and geological studies to partition a geographical area into quadrats and then take a sample of them by a particular sampling design. We study the relevant characteristic of quadrats to estimate a parameter of the population. We suppose that the variable of interest has a positive spatial autocorrelation. Sampl...
متن کاملRobust state estimation in power systems using pre-filtering measurement data
State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...
متن کاملAugmented Downhill Simplex a Modified Heuristic Optimization Method
Augmented Downhill Simplex Method (ADSM) is introduced here, that is a heuristic combination of Downhill Simplex Method (DSM) with Random Search algorithm. In fact, DSM is an interpretable nonlinear local optimization method. However, it is a local exploitation algorithm; so, it can be trapped in a local minimum. In contrast, random search is a global exploration, but less efficient. Here, rand...
متن کاملEstimation of Density using Plotless Density Estimator Criteria in Arasbaran Forest
Sampling methods have a theoretical basis and should be operational in different forests; therefore selecting an appropriate sampling method is effective for accurate estimation of forest characteristics. The purpose of this study was to estimate the stand density (number per hectare) in Arasbaran forest using a variety of the plotless density estimators of the nearest neighbors sampling me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.00783 شماره
صفحات -
تاریخ انتشار 2017